
PHYS 1210 Exam 3
Brief Solutions

1. Grandpa’s grinding wheel

A. Initial angular speed

The initial angular speed is 72.0 rev/min. Our task here is to convert to radians per second. The
conversion factors we need to use are 60 s = 1 min and 2π radians = 1 revolution.

ω0 = 72.0
rev

min
· min

60 s
· 2π rad

rev
=

12π

5

rad

s
= 2.4π

rad

s
= 7.540

rad

s

B. Angular acceleration

α =
∆ω

∆t
=

0− ω0

∆t
=

2.4π rad/s

15.0 s
= 0.16π

rad

s2
= 0.5027 rad/s2

C. Revolutions completed

The best kinematic equation to use is ∆θ = 1/2 (ω + ω0) ∆t. We can use that using the angular
velocities we found in radians per second, or we can just do the whole thing in revolutions and
minutes to avoid converting to radians and back.

∆θ =
1

2
(ω + ω0)∆t =

1

2
(72 rev/min)(0.25 min) = 9 rev

D. Average angular speed

ω = ∆θ/∆t = 9 rev/0.25 min = 36 rev/min = 3.770 rad/s

E. Moment of inertia

Treat the grinding wheel as a uniform cylinder. The formula for the moment of inertia of that shape
about its principal axis is 1/2 MR2. With M = 25.0 kg and = 0.20 m, that gives us 1/2 kg ·m2.

F. Net torque

We know of two ways to think about torque: as a cross product of force and a lever arm, or
as an influence causing an angular acceleration. The latter is what works here. τ = Iα =
(1/2 kg ·m2)(0.16π rad/s2) = 0.08π N ·m = 0.251 N ·m.

G. Torque from the axe

For the last question, I used the second sense of torque. For this question, we use the first. The fric-
tion force is tangential, giving a torque with a magnitude of just fr = (3.5 N)(0.20 m) = 0.7 N ·m.

H. Work to maintain rotation

This question could also have been about the work done on the grinding wheel by the friction from
the axe. The work done by the axe was negative, so Grandpa had to do positive work to maintain
the wheel’s speed and kinetic energy. Work done by a torque is the torque multiplied by the angular
displacement ∆θ = 36 rev = 72π rad; W = τ∆θ = 158.35 J.
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2. Rolling spare tire

A. Translational kinetic energy at 5.5 m/s

K = 1/2mv2 = 1/2(13.8 kg)(5.5 m/s)2 = 208.7 J.

B. Rotational kinetic energy at 5.5 m/s

Rotational kinetic energy is 1/2 Iω2. We are given I = 0.370 kg ·m2, but we need to find ω. The
tire rolls without slipping, so ω = v/r = 26.19 rad/s. Then Krot = 126.90 J.

3. Leaning against a wall

A. Torque exerted by her weight

This is a clockwise (negative) torque. The radius vector is from her feet to her center of mass 1.10
meters away. The force is straight down with magnitude 500 newtons. (The 500 newtons is her

weight mg, not her mass.) The angle from vector ~r to vector ~F is −150◦.Then

τ = ~r × ~F = rF sin(−150◦) = (1.10 m)(500 N)(−0.5) = −275 N ·m

B. Lever arm for her weight

The lever arm of her weight about her feet is the horizontal separation between her center of gravity
and her feet, or (1.10 m) cos(60◦) = 0.55 m.

C. Torque from force FN

We can’t calculate the torque from the force and lever arm, because we don’t know the force. Instead,
we use our knowledge that the leaning woman is in mechanical equilibrium, so the wall must provide
a torque exactly cancelling the torque from her weight, = 275 N ·m.

D. Lever arm for the force from the wall

For this force, the line of action is horizontal, so its lever arm is the vertical height of her shoulders,
1.50 m sin 60◦ = 1.299 m.

E. Magnitude of FN

The easy way to find this is to use the fact that the torque is the force times the lever arm, τ = FL,
so F = τ/L = (275 N ·m)/(1.299 m) = 211.7 N.

F. Straightening up

If she becomes more vertical, she will push less against the wall. In reaction, the wall pushes less
against her.
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4. Hunting with boleadoras

A. Moment of inertia about the initial center of mass

One ball of mass m is a distance 4/3 D from the center. Two balls of mass m are 2/3 D from the
center. Just add their moments together:

I1 = m(4/3 D)2 + 2
[
m(2/3 D)2

]
=

16

9
mD2 +

8

9
mD2 =

24

9
mD2 = 8/3 mD2

B. Moment of inertia fanned out

I2 = 3mD2.

C. initial angular momentum

L1 = I1ω1 = (8/3 mD2)ω1.

D. Final angular momentum

The important idea here is conservation of angular momentum. Final angular momentum is the
same as initial angular momentum, L2 = L1 = I1ω1 = (8/3 mD2)ω1.

E. Final angular velocity

Final angular momentum is final angular velocity times final moment of inertia: L2 = I2ω2. From
conservation of angular momentum:

I2ω2 = I1ω1

ω2 = ω1I1/I2 = ω1
8/3mD2

3mD2
= ω1

8/3

3
ω2 = 8/9 ω1

The angular velocity decreased as the moment of inertia increased.

F. Conservation of kinetic energy

The initial kinetic energy was 1/2 I1 ω
2
1 ; the final kinetic energy was 1/2 I2 ω

2
2 .

K1 = 1/2 I1ω
2
1

K2 = 1/2 I2ω
2
2

= 1/2 I2 (ω1I1/I2)2

= 1/2 (I21/I2)ω2
1

= 1/2 I1ω
2
1(I1/I2)

K2 = K1 (I1/I2)

We see that K1 6= K2, Kinetic energy is absolutely not conserved; final kinetic energy is less than
initial kinetic energy by the same factor that the initial moment of inertia is less than the final
moment of inertia.
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5. Hooke’s law oscillator

In these questions, we consider the oscillations of two different masses on the same spring. The exam
referred to them as m1 and m2, m2 > m1. I think it might be easier to follow if we say that m2 = ζm1,
where ζ is a number greater than 1. So m1 = m and m2 = ζm.

In both cases, the initial displacement of the spring is A and the initial speed is zero. The angular
frequencies of oscillation will be ω2

1 = k/m and ω2
2 = k/ζm = ω2

1/ζ. In other words, ω2 = ω1/
√
ζ.

A. Oscillation periods

The oscillation periods will be T1 = 2π/ω1 and T2 = 2π/ω2 =
√
ζ2π/ω1 =

√
ζT1. So the oscillation

period is longer for the heavier mass.

B. Kinetic energy

The kinetic energy is entirely from work done by the spring. In both cases, the spring works over
the same distance; the kinetic energy at any point is determined by the potential energy at that
point. The mass does not affect this.

C. Maximum speed

The maximum speed of a harmonic oscillator is Aω. The displacement amplitude A is the same for
both oscillators here, but ω2 = ω1/

√
ζ. Thus the maximum speeds are also related as v2 = v1/

√
ζ.

The heavier oscillator is slower at each point in its cycle.

D. Maximum net force

The spring force depends only on position. The maximum force occurs where the spring’s elongation
or compression equals the amplitude, which is the same for both oscillators.

E. Maximum acceleration

Acceleration is net force divided by mass: with the same net force, the lighter mass will accelerate
more. In terms of the kinematic equations, the amplitude of acceleration is Aω2. Because ω2

2 = ω2
1/ζ,

the heavier mass has an acceleration that is a factor of ζ less than the lighter mass.

6. Simple Pendulum

The information we are given is an initial angle of 5◦, a mass of 30 grams, and a length of 0.200 meters.

A. Oscillation amplitude

This is just a conversion problem. The initial angle is five degrees, and we want to find what that is in
radians. A reasonable conversion equality is π rad = 180◦, so 5◦ ·(π/180◦) = π/36 rad = 0.0873 rad.

B. Angular speed at the bottom

This question asked for the pendulum’s angular speed, not the oscillator’s angular frequency. The
angular frequency is constant; the angular speed, which is the derivative of angular displacement
with respect to time, varies sinusoidally.

The angular displacement is θ = Θ sin(ωt), its derivative, the angular velocity, is ωΘ cos(ωt). The
speed is highest at the bottom of the pendulum’s arc, so its value is the amplitude ωΘ. We know Θ
is 0.0873 radians; ω is

√
g/L =

√
(9.8 m/s2)/(0.200 m) = 7/s.

Putting them together gives us ωΘ = 0.6111 rad/s.

You can also find the tangential speed by conservation of energy; the height difference between the
top and bottom of the pendulum’s arc is h = L(1 − cos Θ), and the speed at the bottom is

√
2gh.

Then you’ll need to convert to angular speed by using v/L. You will get nearly the same answer.
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Nearly, not exactly, because the small angle approximation is an approximation.

C. Kinetic energy at the bottom

The most straightforward way to find this is to convert the angular speed ωΘ to tangential speed
v = ωΘL = 0.12217 m/s. Then K = 1/2 mv2 = 2.24× 10−4 J.

It’s about the same amount of work to find the rotational kinetic energy 1/2 I(ωΘ)2. First you need
to find I = mL2 = 0.0012 kg ·m2, then you are on your way.

K = 1/2 (0.0012 kg ·m2)(0.6111 rad/s)2 = 2.24× 10−4 J.

D. Time to return to release

The time to return to the release position is exactly the oscillation period T = 2π/ω. This gives
0.896 seconds.

7. Physical pendulum

The torque due to gravity on the pendulum is −MgL sin θ. At small θ, this is approximately −MgLθ.
This is a torsional oscillator with torsional spring constant κ = MgL. Its oscillation angular frequency is
ω =

√
κ/I. where I is the moment of inertia. In a simple pendulum, I = ML2, but if you can’t neglect

the center-of-mass moment of inertia Icm of the swinging object, its moment of inertia is I = Icm+ML2.
In this particular case, the center-of-mass moment of inertia of the square bob is Icm = 1

6Ma2. Thus

ω2 =
κ

I
=

MgL

Icm +ML2
=

MgL
1
6Ma2 +ML2

=
gL

a2/6 + L2

We are almost done. We just need to find T = 2π/ω.

T = 2π

√
a2/6 + L2

gL
= 2π

√
a2

6gL
+ L/g

Note that this gives the simple pendulum formula if a� L.
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