Name: \qquad

Equilibrium Calculations

1. Complete the expression s for changes in concentrations for each of the following reactions.
a. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

$$
x=\Delta\left[\mathrm{O}_{2}\right] \quad \Delta\left[\mathrm{SO}_{2}\right]=\square \quad \Delta\left[\mathrm{SO}_{3}\right]=
$$

b. $\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$

$$
-2 x=\Delta\left[\mathrm{C}_{2} \mathrm{H}_{4}\right] \quad \Delta\left[\mathrm{C}_{4} \mathrm{H}_{8}\right]=
$$

c. $4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\Delta\left[\mathrm{NH}_{3}\right]=\square \quad \Delta\left[\mathrm{O}_{2}\right]=\square\left[\mathrm{NO}_{2}\right]=\square \quad \Delta\left[\mathrm{H}_{2} \mathrm{O}\right]=
$$

2. When 1.00 mole of each of ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and acetic acid $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ react in 1.00 L of solution with acid catalysis in the solvent dioxane, they combine to produce ethyl acetate $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ and water. Equilibrium is reached when $1 / 3 \mathrm{~mol}$ of each of the reactants remains. Use an ICE table to calculate the equilibrium constant for the reaction. (Water is a solute in this reaction, not a solvent.)

	$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{5} \mathrm{OH}$	$\mathbf{C H}_{\mathbf{3}} \mathrm{CO}_{\mathbf{2}} \mathrm{H}$	$\mathbf{C H}_{\mathbf{3}} \mathrm{CO}_{\mathbf{2}} \mathbf{C}_{\mathbf{2}} \mathrm{H}_{5}$	$\mathbf{H}_{\mathbf{2}} \mathrm{O}$
Initial				
Change				
Equilibrium				

What is the equilibrium constant?
3. Under certain conditions, the equilibrium constant K for the decomposition of $\mathrm{PCl}_{5}(\mathrm{~g})$ into $\mathrm{PCl}_{3}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ is 0.0211 . What are the equilibrium concentrations of $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$, and Cl_{2} in a mixture that initially contained only PCl_{5} at a concentration of 1.00 M ?

