Equilibrium Calculations

1. Complete the expression s for changes in concentrations for each of the following reactions.

a.
$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

$$x = \Delta[O_2]$$
 $\Delta[SO_2] = \underline{\hspace{1cm}}$ $\Delta[SO_3] = \underline{\hspace{1cm}}$

$$\Delta[SO_3] = \underline{\hspace{1cm}}$$

b.
$$C_4H_8(g) \rightleftharpoons 2 C_2H_4(g)$$

$$-2x = \Delta[C_2H_4]$$

$$-2x = \Delta[C_2H_4] \qquad \Delta[C_4H_8] = \underline{\hspace{1cm}}$$

c.
$$4 \text{ NH}_3 (g) + 7 \text{ O}_2 (g) \rightleftharpoons 4 \text{ NO}_2 (g) + 6 \text{ H}_2 \text{O} (g)$$

$$\Delta[NH_3] = \underline{\hspace{1cm}} \Delta[O_2] = \underline{\hspace{1cm}} \Delta[NO_2] = \underline{\hspace{1cm}} \Delta[H_2O] = \underline{\hspace{1cm}}$$

$$\Delta[NO_2] = \underline{\hspace{1cm}} \Delta[H_2O] = \underline{\hspace{1cm}}$$

2. When 1.00 mole of each of ethanol C₂H₅OH and acetic acid CH₃CO₂H react in 1.00 L of solution with acid catalysis in the solvent dioxane, they combine to produce ethyl acetate CH₃CO₂C₂H₅ and water. Equilibrium is reached when 1/3 mol of each of the reactants remains. Use an ICE table to calculate the equilibrium constant for the reaction. (Water is a solute in this reaction, not a solvent.)

	C ₂ H ₅ OH	CH ₃ CO ₂ H	CH ₃ CO ₂ C ₂ H ₅	H ₂ O
Initial				
Change				
Equilibrium				

What is the equilibrium constant?

EQUILIBRIUM CALCULATIONS

3. Under certain conditions, the equilibrium constant K for the decomposition of PCl₅ (g) into PCl₃ (g) and Cl₂ (g) is 0.0211. What are the equilibrium concentrations of PCl₅, PCl₃, and Cl₂ in a mixture that initially contained only PCl₅ at a concentration of 1.00 M?