Name: \qquad

Chemical Equilibrium

1. Write the concentration-based reaction quotient expression for each of the following reactions:
a. $3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{3}(\mathrm{~g})$
b. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
c. $4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
2. Gaseous nitrogen dioxide forms dinitrogen tetroxide according to this equation:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

When 0.10 mol NO 2 is added to a 1.0-L flask at $25^{\circ} \mathrm{C}$, the concentration changes so that at equilibrium, $\left[\mathrm{NO}_{2}\right]=0.016 \mathrm{M}$ and $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.042 \mathrm{M}$.
a. What is the value of the reaction quotient before any reaction occurs?
b. What is the value of the equilibrium constant for the reaction?
3. Calculate the reaction quotient and determine the direction in which each of the following reactions will proceed to reach equilibrium.
a. A 1.00-L flask containing 0.0500 mol of $\mathrm{NO}(\mathrm{g}), 0.0155 \mathrm{~mol}$ of $\mathrm{Cl}_{2}(\mathrm{~g})$, and 0.500 mol of NOCl:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{~g}) \quad K_{\mathrm{c}}=4.6 \times 10^{4}
$$

b. A 5.0-L flask containing 17 g of $\mathrm{NH}_{3}, 14 \mathrm{~g}$ of N_{2}, and 12 g of H_{2} :

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad K_{\mathrm{c}}=0.060
$$

c. A $2.00-\mathrm{L}$ flask containing 230 g of $\mathrm{SO}_{3}(\mathrm{~g})$:

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad K_{\mathrm{c}}=0.230
$$

