Name: \qquad

Reaction Kinetics

1. In the nuclear industry, chlorine trifluoride is used to prepare uranium hexafluoride, a volatile compound of uranium used in the separation of uranium isotopes. Chlorine trifluoride is prepared by the reaction

$$
\mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ClF}_{3}(\mathrm{~g})
$$

Write the equation that relates the rate expressions for this reaction in terms of the disappearance of Cl_{2} and F_{2} and the formation of ClF_{3}.
2. A study of the rate of dimerization of $\mathrm{C}_{4} \mathrm{H}_{6}$

$$
2 \mathrm{C}_{4} \mathrm{H}_{6} \rightarrow \mathrm{C}_{8} \mathrm{H}_{12}
$$

gave the data shown in the table:

Time (s)	0	1600	3200	4800	6200
$\left[\mathrm{C}_{4} \mathrm{H}_{6}\right](\mathrm{M})$	1.00×10^{-2}	5.04×10^{-3}	3.37×10^{-3}	2.53×10^{-3}	2.08×10^{-3}

a. Determine the average rate of dimerization between 0 s and 1600 s , and between 1600 s and 3200 s .
b. Plot a graph of time versus $\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$. Estimate the instantaneous rate of dimerization at 3200 s from the graph. What are the units of this rate?
c. Determine the average rate of formation of $\mathrm{C}_{8} \mathrm{H}_{12}$ at 1600 s and the instantaneous rate of formation at 3200 s from the rates found in parts (a) and (b).
3. Consider the following reaction in aqueous solution:

$$
5 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

If the rate of disappearance of $\mathrm{Br}^{-}(\mathrm{aq})$ at a particular moment during the reaction is 3.510^{-4} mol L ${ }^{-1} \mathrm{~s}^{-1}$, what is the rate of appearance of $\mathrm{Br}^{2}(\mathrm{aq})$ at that moment?
4. Doubling the concentration of a reactant increases the rate of a reaction four times. With this knowledge, answer the following questions:
a. What is the order of the reaction with respect to that reactant?
b. Tripling the concentration of a different reactant increases the rate of a reaction three times. What is the order of the reaction with respect to that reactant?
5. Nitrogen monoxide reacts with chlorine according to the equation

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{~g})
$$

The following initial rates of reaction have been observed for certain reactant concentrations:

$[\mathbf{N O}](\mathrm{mol} / \mathrm{L})$	$[\mathbf{C l 2}](\mathrm{mol} / \mathrm{L})$	Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathbf{h}^{-1}\right)$
0.50	0.50	1.14
1.00	0.50	4.56
1.00	1.00	9.12

a. What is the rate law that describes the rate's dependence on the concentrations of NO and Cl_{2} ?
b. What is the rate constant?
c. What are the orders with respect to each reactant?

