Reaction Kinetics

1. In the nuclear industry, chlorine trifluoride is used to prepare uranium hexafluoride, a volatile compound of uranium used in the separation of uranium isotopes. Chlorine trifluoride is prepared by the reaction

$$\operatorname{Cl}_{2}(g) + 3 \operatorname{F}_{2}(g) \rightarrow 2 \operatorname{ClF}_{3}(g)$$

Write the equation that relates the rate expressions for this reaction in terms of the disappearance of Cl_2 and F_2 and the formation of ClF_3 .

2. A study of the rate of dimerization of C_4H_6

$$2 \operatorname{C}_4H_6 \to \operatorname{C}_8H_{12}$$

gave the data shown in the table:

Time (s)	0	1600	3200	4800	6200
$\left[C_{4}H_{6}\right](M)$	1.00×10^{-2}	5.04×10^{-3}	3.37×10^{-3}	2.53×10^{-3}	2.08×10^{-3}

- a. Determine the average rate of dimerization between 0 s and 1600 s, and between 1600 s and 3200 s.
- b. Plot a graph of time versus $[C_4H_6]$. Estimate the instantaneous rate of dimerization at 3200 s from the graph. What are the units of this rate?

c. Determine the average rate of formation of C_8H_{12} at 1600 s and the instantaneous rate of formation at 3200 s from the rates found in parts (a) and (b).

3. Consider the following reaction in aqueous solution:

$$5 \text{ Br}^{-}(\text{aq}) + \text{BrO}_{3}^{-}(\text{aq}) + 6 \text{ H}^{+}(\text{aq}) \rightarrow 3 \text{ Br}_{2}(\text{aq}) + 3 \text{ H}_{2}\text{O}(\text{l})$$

If the rate of disappearance of $Br^{-}(aq)$ at a particular moment during the reaction is 3.5 10^{-4} mol $L^{-1} s^{-1}$, what is the rate of appearance of $Br^{2}(aq)$ at that moment?

- 4. Doubling the concentration of a reactant increases the rate of a reaction four times. With this knowledge, answer the following questions:
 - a. What is the order of the reaction with respect to that reactant?
 - b. Tripling the concentration of a different reactant increases the rate of a reaction three times. What is the order of the reaction with respect to that reactant?
- 5. Nitrogen monoxide reacts with chlorine according to the equation

$$2 \text{ NO}(g) + \text{Cl}_2(g) \rightarrow 2 \text{ NOCl}(g)$$

The following initial rates of reaction have been observed for certain reactant concentrations:

[NO] (mol/L)	[Cl2] (mol/L)	Rate (mol $L^{-1} h^{-1}$)
0.50	0.50	1.14
1.00	0.50	4.56
1.00	1.00	9.12

a. What is the rate law that describes the rate's dependence on the concentrations of NO and Cl_2 ?

b. What is the rate constant?

c. What are the orders with respect to each reactant?