| Name: | | |-------|--| | | | ## **Lewis Structures** ## 1. Covalent bonding opportunities For each atom or ion below, determine the number of its valence electrons, portion them as evenly as possible to the four valence orbitals on a dot diagram, identify the number of unpaired electrons, and predict the number of covalent bonds the atom or ion can make. | Atom or ion | Number of Valence
Electrons | Dot diagram | Unpaired electrons | Bonds
possible | |----------------|--------------------------------|-------------|--------------------|-------------------| | Si | 4 | •Si• | 4 | 4 | | S | | S | | | | Н | | Н | | | | В | | В | | | | С | | С | | | | О | | О | | | | O ⁻ | | О | | | | Cl | | Cl | | | | N | | N | | | | N ⁺ | | N | | | | Р | | P | | | ## 2. Molecules with Single Bonds Create Lewis structures for each formula. Some formulas may describe several valid structures. H_2O H_2S NH_3 CH_4 $CHCl_3$ C_2H_6 CH_4O C_2H_6O $OH^ NH_4^+$ $\mathrm{BH_4}^ \mathrm{B(OH)_4}^-$ Si(OH)₄ SiO₄⁴ H_2O_2 N_2H_4 ## 3. Molecules with Multiple Bonds Create Lewis structures for each formula. Some formulas may describe several valid structures. (Don't bond oxygen atoms to each other.) | C_2H_4 | CO_2 | |-------------------------------|-------------------------------| | C_3H_4 | CH ₂ O | | $\mathrm{CH_2O_2}$ | $\mathrm{C_2H_4O_2}$ | | $\mathrm{C_2H_2}$ | $\mathrm{C_4H_6}$ | | $C_2H_5NO_2$ | $\mathrm{C_2H_3O_2}^-$ | | NO_3^- | CO ₃ ²⁻ | | HCO ₃ ⁻ | N_2 | | СО | BF | | HCN | SCN ⁻ | |--|------------------------------------| | CN ⁻ | ${\rm O_2}^{2-}$ | | 4. More Create Lewis structures for each formula. | You figure out how they are bonded | | HNO ₃ | СІОН | | C_4H_8 | СэНэОэ |