Name:	

Lewis Structures

1. Covalent bonding opportunities

For each atom or ion below, determine the number of its valence electrons, portion them as evenly as possible to the four valence orbitals on a dot diagram, identify the number of unpaired electrons, and predict the number of covalent bonds the atom or ion can make.

Atom or ion	Number of Valence Electrons	Dot diagram	Unpaired electrons	Bonds possible
Si	4	•Si•	4	4
S		S		
Н		Н		
В		В		
С		С		
О		О		
O ⁻		О		
Cl		Cl		
N		N		
N ⁺		N		
Р		P		

2. Molecules with Single Bonds

Create Lewis structures for each formula. Some formulas may describe several valid structures.

 H_2O H_2S

 NH_3 CH_4

 $CHCl_3$ C_2H_6

 CH_4O C_2H_6O

 $OH^ NH_4^+$

 $\mathrm{BH_4}^ \mathrm{B(OH)_4}^-$

Si(OH)₄ SiO₄⁴

 H_2O_2 N_2H_4

3. Molecules with Multiple Bonds

Create Lewis structures for each formula. Some formulas may describe several valid structures. (Don't bond oxygen atoms to each other.)

C_2H_4	CO_2
C_3H_4	CH ₂ O
$\mathrm{CH_2O_2}$	$\mathrm{C_2H_4O_2}$
$\mathrm{C_2H_2}$	$\mathrm{C_4H_6}$
$C_2H_5NO_2$	$\mathrm{C_2H_3O_2}^-$
NO_3^-	CO ₃ ²⁻
HCO ₃ ⁻	N_2
СО	BF

HCN	SCN ⁻
CN ⁻	${\rm O_2}^{2-}$
4. More Create Lewis structures for each formula.	You figure out how they are bonded
HNO ₃	СІОН
C_4H_8	СэНэОэ