Worksheet 27: Orbital Interactions

Circular orbit

In a circular orbit, the centripetal force mv^2/r on the orbiting body is the force of gravity GMm/r^2 . This gives an orbital speed of $v = \sqrt{GM/r}$ and period $T = 2\pi r/v = 2\pi \sqrt{r^3/GM}$.

Bound and unbound orbits

If the total mechanical energy $K_{tr} + U_g$ of two bodies in their center-of-mass frame of reference is negative, they are gravitationally bound. If positive, they will escape.

The escape speed from a gravitational attractor of mass M depends on its mass and proximity: $v = \sqrt{2GM/r}$.

Closed orbits

In a closed orbit, both bodies orbit their center of mass. Mechanical energy and angular momentum (about the center of mass) are both conserved.

The orbit of satellites orbiting a much larger attractor follow Kepler's laws:

- 1. The orbits are ellipses with one focus at the massive attractor
- 2. The orbit sweeps out equal areas in equal times
- 3. The orbital period T is related to the semi-major axis a of the orbit as $T^2 \propto a^3$

Problems

- 1. The mass of Earth is 5.97×10^{24} kg.
 - a. What is the escape speed from Earth's surface, 6.38×10^6 m from its center?

b. What is the escape speed from Earth at the Moon's orbital distance, 3.84×10^8 m from Earth's center?

- 2. Suppose two solar-mass $(1.99 \times 10^{30} \text{ kg})$ stars make up a double system with a constant separation between them of 1 AU $(1.50 \times 10^{11} \text{ m})$.
 - a. What is the period of their orbit?

b. What is their centripetal acceleration?

- 3. The planet Uranus has a radius of 25,362 km and a surface gravity of 8.87 N/kg at its poles. Its moon Miranda is in a circular orbit at a distance of 129,560 km from Uranus's center. Miranda has a mass of 6.6×10^{19} kg and a radius of 235 km.
 - a. Calculate the mass of Uranus from the given data.

- b. Calculate the magnitude of Miranda's orbital acceleration due to its orbital motion about Uranus.
- c. Calculate the acceleration due to Miranda's gravity at the surface of Miranda.
- d. Do the answers to parts b and c mean that an object released 1 m above Miranda's surface on the side toward Uranus will fall *up* relative to Miranda? Explain what is happening.