Worksheet 21: Mechanical Waves 1

Objectives

- Trace the movement of the medium in different mechanical waves.
- Relate the mathematical equation of a wave and its period, frequency, amplitude, speed, angular frequency, angular wavenumber, wavelength, and speed.

Summary

Limiting Types

In a transverse wave, the medium oscillates in a direction perpendicular to the wave travel. In a longitudinal wave, the medium oscillates parallel to the wave travel.

Mathematical Description

The simplest description of a wave is the sinusoidal function $y(x, t)=A \cos (k x-\omega t+\phi)$, where y is the displacement of the medium, A is the maximum amplitude of oscillation, x is the rest position of the medium, t is time, the angular wavenumber $k=2 \pi / \lambda$, the angular frequency $\omega=2 \pi / T, \phi$ is the phase offset, λ is the wavelength, and T is the period. The propagation speed or phase speed of the wave is $v=\lambda / T=\omega / k$.

Problems

1. The transverse displacements in a stretched cord travel from left to right.

a. In what direction is the rope at positions $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d accelerating?
b. In what direction is the rope at positions $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d moving?
2. A wave has an angular frequency of $4 \pi \mathrm{rad} / \mathrm{s}$ and a wavelength of 0.3 m .
a. What is the angular wavenumber k of the wave?
b. What is the period T of the wave?
c. What is the propagation speed of the wave?
3. The speed of electromagnetic waves in vacuum is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
a. In the United States, many cell phones employ carrier frequencies of 824894 MHz . What are the wavelengths of these waves?
b. Near the close of the 20th century, physicists found that light traveled through a Bose-Einstein condensate (BEC) at a mere $17 \mathrm{~m} / \mathrm{s}$. If sodium D-line light has a wavelength of 589 nm in vacuum, what would its wavelength be in the BEC? (The speed of the light changes in the BEC, but its frequency does not.)
4. The equation of a transverse wave traveling along a very long string is $y=6.0 \mathrm{~cm} \cos (0.020 \pi x / \mathrm{cm}-4.0 \pi t / \mathrm{s})$. Determine:
a. the amplitude
b. the wavelength
c. the frequency
d. the speed of propagation
e. the direction of propagation
f. the maximum transverse speed of a particle in the string
