Worksheet 20: Pendulums

1. A torsional oscillator can be thought of as a torsion spring with torque constant κ and a rotor with moment of inertia I. Its kinematics follow an angular Hooke's law torque $\tau=-\kappa \theta$ and the angular Newton's second law $\tau=I \alpha$, where $\alpha=d^{2} \theta / d t^{2}$. Its angular displacement is given by the function $\theta=\cos (\omega t+\phi)$.

What is the value of ω in this function, in terms of the characteristics of the spring and rotor?
2. The small-angle approximation models $\sin \theta \approx \theta$ in radians. How small does θ need to be for this to be a decent approximation?

$\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}$	$\boldsymbol{\theta}-\sin \boldsymbol{\theta}$	$(\theta-\sin \boldsymbol{\theta}) / \sin \boldsymbol{\theta}$
$1 / 180 \pi$			
$2 / 180 \pi$			
$5 / 180 \pi$			
$10 / 180 \pi$			
$20 / 180 \pi$			1%
$45 / 180 \pi$			5%
			10%

4. Find the length of a simple pendulum with a period of oscillation of 2.0 s .
