Worksheet 19: Simple Harmonic Motion

1. Sketch the position-time graph you would expect from a mass bobbing at the end of a spring. More precisely, sketch the position-time graph you would expect from a moving object acted on by a Hooke's law force $F=-k x$.
2. Sketch velocity-time and acceleration-time graphs corresponding to the motion from the previous problem.
3. We have made an ansatz (guess) of the equation of motion for a Hooke's law mass, which we hope is the solution to the differential equation of Hooke's law, $m d^{2} x / d t^{2}=-k x$.
a. Write down the proposed formula for the position as a function of time.
b. To test if the ansatz satisfies the differential equation, we will need to know the acceleration $d^{2} x / d t^{2}$. From our ansatz for $x(t)$, find:
i. The first derivative $d x / d t$.
ii. The second derivative $d^{2} x / d t^{2}$.
4. Substitute the ansatz $x(t)$ and its second derivative $d^{2} x / d t^{2}(t)$ into the Hooke's law differential equation to see if it works.
