Worksheet 18: Angular Momentum

- 1. Two matching space stations of mass *m* are tethered by a cable to be a distance $d_1 = 800$ m apart. They rotate about their mutual center of mass with a period of $T_1 = 40.0$ s.
 - a. What is the moment of inertia I_1 of the pair of space stations? Express in terms of *m* and their radius of rotation r_1 . Treat them as point masses.
 - b. What is their angular speed ω_1 ? Express in terms of T_1 .
 - c. What is their centripetal acceleration a_1 ? Express in terms of ω_1 and r_1 .
 - d. What is their angular momentum L_1 ? Express in terms of I_1 and ω_1 .
 - e. What is their kinetic energy K_1 ? Express in terms of I_1 and ω_1 .
 - f. How would your answers to parts a and e change if you did not approximate the space stations as point masses, but took their center-of-mass moments of inertia into account?
- 2. The tether connecting the space stations of question 1 is lengthened to 5/4 of its initial length, 1000 m.
 - a. What is the new radius of rotation r_2 of the space stations? Express in terms of r_1 .
 - b. What is the new moment of inertia I_2 of the pair? Express in terms of I_1 . Continue to treat them as point masses.
 - c. What is their new angular momentum L_2 ? Express in terms of L_1 .

- d. What is their new angular speed ω_2 ? Express in terms of ω_1 .
- e. What is their new centripetal acceleration a_2 ? Express in terms of a_1 .
- f. What is their new kinetic energy K_2 ? Express in terms of K_1 .
- 3. The tether connecting the space stations of question 1 is shortened to 4/5 of its initial length, 640 m.
 - a. What is the new radius of rotation r_3 of the space stations? Express in terms of r_1 .
 - b. What is the new moment of inertia I_3 of the pair? Express in terms of I_1 . Continue to treat them as point masses.
 - c. What is their new angular momentum L_3 ? Express in terms of L_1 .
 - d. What is their new angular speed ω_3 ? Express in terms of ω_1 .
 - e. What is their new centripetal acceleration a_3 ? Express in terms of a_1 .
 - f. What is their new kinetic energy K_3 ? Express in terms of K_1 .