Worksheet 14: Center of Mass

Objective

- Find the center of mass of an object or set of objects.

Summary

Definition

The center of mass of a set of N point masses each with mass m_{i} and position \vec{r}_{l} is at $\vec{r}_{\mathrm{CM}}=\sum_{i=1}^{N} \frac{m_{i} \vec{r}_{l}}{m_{i}}$. The position of the center of mass of an extended object of mass M is $\frac{1}{M} \iiint_{V} \vec{r} d m$.

Problems

1. Express the formula for center of mass in terms of the components $\left(x_{i}, y_{i}, z_{i}\right)$ of the position vectors $\vec{r}_{l}=x_{i} \hat{\imath}+y_{i} \hat{\jmath}+z_{i} \hat{k}$.
2. Derive the formula for the velocity of the center of mass of a set of point masses.
3. A center of mass frame of reference has coordinate axes whose origin is at the center of mass of the system.
a. The j th particle in the system has mass m_{j} and velocity \vec{v}_{j}. What is its velocity in the center of mass frame of reference?
b. What is the momentum of the j th particle in the center of mass frame of reference?
c. What is the total momentum of all N particles in the center of mass frame of reference?
4. A $45.0-\mathrm{kg}$ woman stands up in a $60.0-\mathrm{kg}$ canoe that is 5.00 m long. She walks from a point 1.00 m from one end to a point 1.00 m from the other end. Neglect drag from the water on the canoe.
a. How far does the canoe move during this process? Assume that the center of mass of (canoe + woman) does not move.
b. Relative to solid ground, how far does the woman move during this process?
