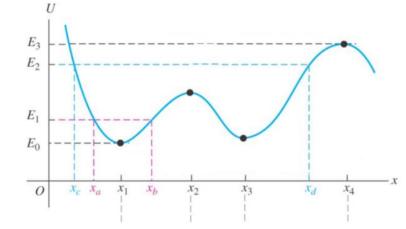
Worksheet 11: Conservative and non-conservative forces

Objective

• Classify forces as conservative or non-conservative.

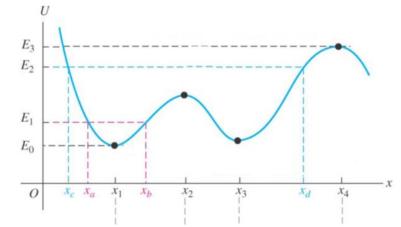
Summary

A conservative force maintains mechanical energy. A conservative force is the negative gradient of some scalar potential function, $\vec{F} = -\frac{dU}{dx}$. Work done by a conservative force \vec{F} is a change of its associated potential energy U.


This can be expressed in several ways:

- The work done by a conservative force is the same along all paths between the same two places.
- The work done by a conservative force around any closed path is zero.
- The curl $\nabla \times \vec{F}$ of a conservative force is zero everywhere.

Problems


1. a. Sketch the potential energy function near a point of neutral equilibrium.

- b. Give an example of an object in neutral equilibrium.
- 2. Below is an arbitrary hypothetical potential function U(x).
 - a. Mark where the gradient of U(x) is positive, negative, and zero

PHYS 1210-01 BARRANS

b. Mark where the force on the particle is to the right, and where it is to the left.

- c. Mark where the particle is at equilibrium, and classify the equilibrium as stable or unstable.
- 4. Identify the places where the particle in the potential U above can be and describe its possible motion in the scenarios described below.
 - a. Total energy $E = E_0$.
 - b. Total energy $E = E_1$.
 - c. Total energy $E = E_2$.
 - d. Total energy $E > E_3$.
 - e. Total energy $E < E_0$.