Worksheet 10: Potential Energy and Power

Objective

- Examine how quickly a force does work.

Summary

Hooke's law (ideal spring): $F=-k x$;
Work to stretch or compress an ideal spring from rest to displacement x : $W=1 / 2 k x^{2}$
Work to lift an object of mass m a height $h: m g h$
Rate of doing work $=$ Power $=d W / d t$

Problems

1. Two springs with spring constant k are connected end-to-end. What is the spring constant of the compound spring?
2. Two springs with spring constant k are combined side-to-side. What is the spring constant of the compound spring?
3. An egg is released from rest from the roof of a building and falls to the ground. Its fall is observed by a student on the roof of the building, who uses coordinates with origin at the roof, and by a student on the ground, who uses coordinates with origin at the ground.
Do the students assign the same or different values to:
a. The initial gravitational potential energy $U_{\text {grav }}$?
b. The final gravitational potential energy $U_{\text {grav }}$?
c. The change in gravitational potential energy $\Delta U_{\text {grav }}$?
d. The kinetic energy K of the egg just before it lands?
4. The 2004 Tour de France's Alpe d'Huez time trial stage was a steep climb with its finish 1200 m higher than the start. Lance Armstrong won with a time $\mathrm{D} t$ of 39:41 (2381 s). He and his gear had a combined mass of 84 kg .
a. What work did Lance do against gravity over the stage?
b. What was Lance's average power during the stage?
5. Show that the units of work/time are the same as the units of force \cdot velocity.
