Worksheet 9: Work

Objective

• Evaluate the work done by a force.

Summary

 $dW = \vec{F} \cdot d\vec{s}$, where \vec{F} is applied force and \vec{s} is the path traversed by the object acted on by \vec{F} .

Problems

1. Rank the following scenarios from least work done to most work done.

- 2. A luggage handler at the Laramie Airport pulls a 20-kg suitcase from rest up a ramp inclined at 25° above the horizontal with a force of 140 N parallel to the ramp. The coefficient of kinetic friction between the ramp and the box is $\mu_k = 0.30$. The suitcase travels 3.80 m along the ramp. Find
 - a. the work done on the suitcase by the handler
 - b. the work done on the suitcase by gravity
 - c. the work done on the suitcase by the normal force

	d.	the work done on the suitcase by friction
	e.	the total work done on the suitcase
	f.	the final speed of the suitcase
3.		spring, when relaxed, has a length of 40.0 cm. When it stretched under a tension of 60 N, its length is 45.0 cm. What is the spring constant of the spring?
	b.	What would be the length of the spring under tension of 4.50 N?
	c.	What tension would make the spring 50.0 cm long?

PHYS 1210-02 2