Worksheet 3: Unit and Vector Algebra

Objectives

- Convert between units.
- Carry out mathematical operations with vectors.

Summary

Quantities and units

All the phenomena we will discuss in this class can be described in terms of three fundamental quantities: distance, mass, and time. The respective mks or SI units for these are the meter m, kilogram kg, and second s. The units for all physical quantities used in this course can be expressed in terms of these fundamental units.

Units of measurement can be operated on mathematically just like variables in algebrathey add together, subtract from each other, multiply, and divide. Converting between units of the same quantity requires identifying a proportional relationship between them.
Example: $1 \mathrm{~h}=60 \mathrm{~min}$, so $24 \mathrm{~h}=24(60 \mathrm{~min})=1440 \mathrm{~min}$.

Vectors

Many physical quantities have particular directions and are expressed as vectors.
Often expressed as components: $\vec{A}=\left(A_{x}, A_{y}, A_{z}\right)=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}$.
Unit vectors: $\hat{\imath}=(1,0,0) ; \hat{\jmath}=(0,1,0) ; \hat{k}=(0,0,1)$
Magnitude: $\|\vec{A}\|=A=\sqrt{A_{x}+A_{y}+A_{z}}$
Addition: $\vec{A}+\vec{B}=\left(A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}\right)$
Scalar multiplication: $c \vec{A}=c\left(A_{x}, A_{y}, A_{z}\right)=\left(c A_{x}, c A_{y}, c A_{z}\right)$
Scalar product (dot product): $\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=A B \cos (\theta)$, where θ is the angle from \vec{A} to \vec{B}.
Vector product (cross product): $\vec{A} \times \vec{B}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right| ;\|\vec{A} \times \vec{B}\|=A B \sin (\theta)$.
$\vec{A} \times \vec{B}$ is a vector, perpendicular to both \vec{A} and \vec{B}, in the direction given by the right-hand rule.

Problems

1. What are the units of volume? Suppose another student tells you that a cylinder of radius r and height h has a volume given by $\pi r^{3} h$. Explain why this cannot be right.
2. Light travels in a vacuum $2.9979 \times 10^{8} \mathrm{~m}$ in 1 s . How many nanoseconds does it take to travel 1.00 ft ?
3. If the dot product of two vectors is negative $(\vec{A} \cdot \vec{B}<0)$, what does that tell you about them?
4. The magnitude of the cross product of two vectors is proportional to the sine of the angle between them. Vector magnitudes are always considered positive, yet a sine can be negative as well as positive. If $\sin (\theta)$ of the angle from \vec{A} to \vec{B} is negative:
a. What does that mean about the angle θ ?
b. What does that mean for the direction of the vector $\vec{A} \times \vec{B}$?
5. A baseball thrown from the origin follows a path described by $x=15 \frac{\mathrm{~m}}{\mathrm{~s}} t$, $y=15 \frac{\mathrm{~m}}{\mathrm{~s}} t-5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} t^{2}$.
a. Find the formulas for the horizontal ($x-$) components of velocity v_{x} and acceleration a_{x}.
b. Find the formulas for the vertical $(y-)$ components of velocity v_{y} and acceleration a_{y}.
c. Sketch graphs of x, v_{x}, and a_{x} with time.
d. Sketch graphs of y, v_{y}, and a_{y} with time.
e. Find the formula for its speed $v=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{v_{x}^{2}+v_{y}^{2}}$ with time.
f. Find the formula for the magnitude of its acceleration $a=\sqrt{\vec{a} \cdot \vec{a}}=\sqrt{a_{x}^{2}+a_{y}^{2}}$ with time.
g. Find the formula for the rate of change of its speed $d v / d t$ with time.
